What Role do Factors Play?

Now that we have established a deeper understanding of the role that dominant terms, lead coefficients and factors have on the look of a graph, we are ready to "role" :

Each of the functions are already expressed in factored form.
Sketch the graph of each of the following polynomial functions. Your sketch should include proper end behaviours, correct x -intercepts (remember to consider what happens with repeated roots!) and a correct y -intercept.
a) $\quad f(x)=(x-4)(x+3)$
b) $f(x)=-(x-1)(x+4)(x-1 / 2)$
c) $f(x)=(2 x-1)(x+1)^{2}$
d) $f(x)=2 x(x-2)^{2}$
e) $f(x)=-(2 x-3)^{2}(x+2)^{2}$
f) $f(x)=x(x-2)(x+1)(2 x+3)$
g) $\quad f(x)=x^{3}(x-4)$
h) $f(x)=-(x+3)^{2}(x-3)^{3}$
i) $\quad f(x)=x(x+2)(x-1)(x-3)(x+4)$
*** solutions to the graphs are on the website

What Role do Factors Play?

Now that we have established a deeper understanding of the role that dominant terms, lead coefficients and factors have on the look of a graph, we are ready to "role" :

Each of the functions are already expressed in factored form.
Sketch the graph of each of the following polynomial functions. Your sketch should include proper end behaviours, correct x -intercepts (remember to consider what happens with repeated roots!) and a correct y -intercept.
a) $\quad f(x)=(x-4)(x+3)$
b) $f(x)=-(x-1)(x+4)(x-1 / 2)$
c) $f(x)=(2 x-1)(x+1)^{2}$
d) $f(x)=2 x(x-2)^{2}$
e) $f(x)=-(2 x-3)^{2}(x+2)^{2}$
f) $f(x)=x(x-2)(x+1)(2 x+3)$
g) $f(x)=x^{3}(x-4)$
h) $f(x)=-(x+3)^{2}(x-3)^{3}$
i) $\quad f(x)=x(x+2)(x-1)(x-3)(x+4)$
*** solutions to the graphs are on the website

