Trig Angles and Trig Ratios Review

Question #1

etermine a positive and negative co-terminal angle for each of the following:

(a)
$$\frac{2\pi}{4}$$

(b) 212° (c)
$$\frac{6\pi}{7}$$

Ouestion #2

Determine the central angle formed by an arc length of 28 mm in a circle with a diameter of 1.7 cm. Express your answer in approximate radian measure and in degrees, correct to one decimal place.

Ouestion #3

Given a point on the terminal arm of angle θ , determine the 3 primary trig ratios in exact radical form. Also determine the measure of angle θ in approximate radian measure and in degrees, correct to one decimal place.

Ouestion #4

Evaluate (determine the trig ratio), leaving all answers in exact radical form:

Ouestion #5

Determine all possible values for θ , such that $0 \le \theta \le 2\pi$. Give answer in exact radian measure, when possible.

(a)
$$\sin \theta = \frac{-\sqrt{3}}{2}$$

(b)
$$\sec \theta = -\sqrt{2}$$
 (c) $\tan \theta = \frac{\sqrt{3}}{3}$

(c)
$$\tan \theta = \frac{\sqrt{3}}{3}$$

Ouestion #6

Determine all possible values for θ , such that $-2\pi \le \theta \le 2\pi$. Give answers in exact radian measure, when possible.

(a)
$$\sin \theta = \frac{-\sqrt{3}}{2}$$

(b)
$$\sec \theta = -\sqrt{2}$$

(b)
$$\sec \theta = -\sqrt{2}$$
 (c) $\tan \theta = \frac{\sqrt{3}}{3}$

Question #7

Determine all possible values for θ , such that $0 \le \theta \le 2\pi$. Give answers in approximate radian measure, correct to one decimal place.

(a)
$$\cos \theta = \frac{-2}{5}$$
 (b) $\csc \theta = \frac{5}{2}$ (c) $\cot \theta = \frac{\sqrt{5}}{3}$

(b)
$$\csc \theta = \frac{5}{2}$$

(c)
$$\cot \theta = \frac{\sqrt{5}}{3}$$

Answers

#1 (a)
$$\frac{5\pi}{2}$$
, $\frac{-3\pi}{2}$ (b) 572° , -148° (c) $\frac{20\pi}{7}$, $\frac{-8\pi}{7}$

#2 3.3 rads, 188.7°

#3 (a)
$$\sin \theta = \frac{-3\sqrt{10}}{10}$$
, $\cos \theta = \frac{\sqrt{10}}{10}$, $\tan \theta = -3$, $\theta = 244.8^{\circ}$ or $\theta = 5.0$ rads

(b)
$$\sin \theta = \frac{-2\sqrt{13}}{13}$$
, $\cos \theta = \frac{-3\sqrt{13}}{13}$, $\tan \theta = \frac{2}{3}$, $\theta = 213.7^{\circ}$ or $\theta = 3.7$ rads

(c)
$$\sin \theta = \frac{\sqrt{65}}{65}$$
, $\cos \theta = \frac{-8\sqrt{65}}{65}$, $\tan \theta = -\frac{1}{8}$, $\theta = 172.9^{\circ}$ or $\theta = 3.0$ rads

#4
$$\csc(-120) = \frac{-2\sqrt{3}}{3}$$
, $\tan(330) = \frac{-\sqrt{3}}{3}$, $\cos(585) = \frac{-\sqrt{2}}{2}$

#5 (first two answers) and #6 (all four answers)

(a)
$$\frac{5\pi}{3}, \frac{4\pi}{3}, \frac{-\pi}{3}, \frac{-2\pi}{3}$$

(b)
$$\frac{3\pi}{4}, \frac{5\pi}{4}, \frac{-5\pi}{4}, \frac{-3\pi}{4}$$

(a)
$$\frac{5\pi}{3}, \frac{4\pi}{3}, \frac{-\pi}{3}, \frac{-2\pi}{3}$$
 (b) $\frac{3\pi}{4}, \frac{5\pi}{4}, \frac{-5\pi}{4}, \frac{-3\pi}{4}$ (c) $\frac{\pi}{6}, \frac{7\pi}{6}, \frac{-11\pi}{6}, \frac{-5\pi}{6}$