MHF4U: Factor and Remainder Theorems THINKING and COMMUNICATION 1

1. The volume in cubic, centimetres, of a rectangular box can be modeled by the polynomial expression $2 x^{3}+x^{2}-27 x-36$. (Note: $V=l w h, S A=2(l w+l h+w h)[\mathrm{TH} / 5]$
A) Determine possible dimensions of the box in terms of " x ". [4]

B) Determine the Surface Area of the box (lid included) if $x=5 \frac{1}{2} \mathrm{~cm}$. [1]
2. When $3 x^{2}+10 x-3$ is divided by $x+k$, the remainder is 5 . Determine all possible values of " k ". [TH/3]
3. (a) When the polynomial $f(x)=a x^{3}-x^{2}+2 x+b$ is divided by $x-1$, the remainder is 8 . When it is divided by $x-2$, the remainder is 28 . Determine the values of a and b. [TH/4]
(b) Using the values you determined for a and b, determine the quotient and remainder when $f(x)$ is divided by $\left(x^{2}-2\right) .[\mathrm{TH} / 3]$
(c) Using a division statement, prove your quotient and remainder are correct. [TH/2]
4. When $6 x^{3}-5 x^{2}+k x-18$ is divided by $2 x-3$, the remainder is -3 . Find the quotient.

MHF4U: Factor and Remainder Theorems THINKING and COMMUNICATION 2

1. The volume in cubic, centimetres, of a rectangular box can be modeled by the polynomial expression $2 x^{3}-3 x^{2}-32 x-15$. (Note: $V=l w h, S A=2(l w+l h+w h)[\mathrm{TH} / 5]$
A) Determine possible dimensions of the box in terms of " x ". [4]

B) Determine the Surface Area of the box (lid included) if $x=8 \frac{1}{2} \mathrm{~cm}$. [1]
2. When $3 x^{2}+10 x-2$ is divided by $x+k$, the remainder is -5 . Determine all possible values of " k ". [TH/3]
3. (a) When the polynomial $f(x)=a x^{3}-x^{2}+2 x+b$ is divided by $x-1$, the remainder is 8 . When it is divided by $x+1$, the remainder is -4 . Determine the values of a and b. [TH/4]
(b) Using the values you determined for a and b, determine the quotient and remainder when $f(x)$ is divided by $\left(x^{2}-3\right) .[\mathrm{TH} / 3]$
(c) Using a division statement, prove your quotient and remainder are correct. [TH/2]
4. When $4 x^{3}-12 x^{2}+k x-7$ is divided by $2 x-3$, the remainder is -4 . Find the quotient.

MHF4U: Factor and Remainder Theorems THINKING and COMMUNICATION 3

1. The volume in cubic, centimetres, of a rectangular box can be modeled by the polynomial expression $2 x^{3}+3 x^{2}-29 x-60$. (Note: $V=l w h, S A=2(l w+l h+w h)[\mathrm{TH} / 5]$
A) Determine possible dimensions of the box in terms of " x ". [4]

B) Determine the Surface Area of the box (lid included) if $x=8 \frac{1}{2} \mathrm{~cm}$. [1]
2. When $5 x^{2}+13 x-2$ is divided by $x+k$, the remainder is 4 . Determine all possible values of " k ". [TH/3]
3. (a) When the polynomial $f(x)=a x^{3}-x^{2}+2 x+b$ is divided by $x-1$, the remainder is 14 . When it is divided by $x-2$, the remainder is 69 . Determine the values of a and b. [TH/4]
(b) Using the values you determined for a and b, determine the quotient and remainder when $f(x)$ is divided by $\left(x^{2}-1\right)$. [TH/3]
(c) Using a division statement, prove your quotient and remainder are correct. [TH/2]
4. When $10 x^{3}-17 x^{2}+k x-7$ is divided by $2 x-3$, the remainder is -1 . Find the quotient.

MHF4U: Factor and Remainder Theorems THINKING and COMMUNICATION 4

1. The volume in cubic, centimetres, of a rectangular box can be modeled by the polynomial expression $2 x^{3}-x^{2}-36 x-45$. (Note: $V=l w h, S A=2(l w+l h+w h)[\mathrm{TH} / 5]$
A) Determine possible dimensions of the box in terms of " x ". [4]

B) Determine the Surface Area of the box (lid included) if $x=9 \frac{1}{2} \mathrm{~cm}$. [1]
2. When $2 x^{2}-3 x-23$ is divided by $x+k$, the remainder is -3 . Determine all possible values of " k ". [TH/3]
3. (a) When the polynomial $f(x)=a x^{3}-x^{2}+2 x+b$ is divided by $x-1$, the remainder is 2 . When it is divided by $x+2$, the remainder is -52 . Determine the values of a and b. [TH/4]
(b) Using the values you determined for a and b, determine the quotient and remainder when $f(x)$ is divided by $\left(x^{2}-2\right) .[\mathrm{TH} / 3]$
(c) Using a division statement, prove your quotient and remainder are correct. [TH/2]
4. When $8 x^{3}-8 x^{2}+k x-9$ is divided by $2 x-3$, the remainder is -6 . Find the quotient.
