Remainder Theorem and Factor Theorem Note

Example 1: Determine the remainder of $(x^3 - 7x + 4) \div (x - 3)$ using synthetic division

Example 2: Determine the remainder of $(3x^2 + 5x + 2) \div (x + 4)$ using synthetic division

Example 3: Determine the remainder of $(4x^3 + 2x^2 + 1) \div (2x - 1)$ using synthetic division

Remainder Theorem:

If any polynomial f(x) is divided by divisor (x-a), the remainder is equal to f(a).

Factor Theorem: (x-a) is a factor of f(x) if f(a) = 0 \odot

Example 4: Determine the remainder when $(x^4 - 3x^3 - 2x + 9) \div (x - 3)$

Example 5 : Determine the remainder when $(2x^3 - 7x + 4) \div (2x - 1)$

Example 6: Determine the remainder when $(24-14x+x^3-x^2) \div (x+4)$

Can any of the divisors above be classified as "factors" of their respective polynomial? Explain.

Example 6 AGAIN: Factor: $f(x) = 24 - 14x + x^3 - x^2$

Example 7: Factor: $f(x) - 2x^3 = -3x^2 - 18x - 8$