Polynomial Functions

Question #1

Answer the following for each of the given polynomial functions:

(a)
$$f(x) = 2x^5 - 3x^3 - 5$$

As
$$x \to -\infty$$
, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

This function is an even function, odd function or neither _____

The degree of the polynomial is ____

(b)
$$f(x) = -x^4 - x^2 + 3$$

The degree of the polynomial is _____

As
$$x \to -\infty$$
, $f(x) \to$ ______
As $x \to \infty$, $f(x) \to$ ______

This function is an even function, odd function or neither ____

(c)
$$f(x) = -7x^3 + x^2 - 8x$$

The degree of the polynomial is _____

As	$x \to -\infty, f(x) \to \underline{\hspace{1cm}}$	
As	$x \to \infty$. $f(x) \to$	_

This function is an even function, odd function or neither

Question #2

Sketch a graph of a polynomial function that satisfies each set of conditions:

(a) degree of 4, negative leading coefficient, 1 zero, 3 turning points

(b) degree of 5, negative leading coefficient, 3 zeros, 4 turning points

Question # 3

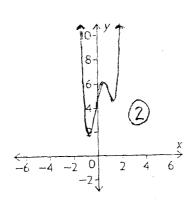
Match up the polynomial functions with an appropriate graph, and then determine the number of zeros for each polynomial function.

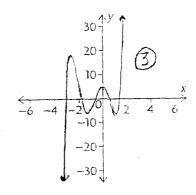
$f(x) = 3x^4 - 4x^5 - 4x^2 + 5x + 5$ (a)

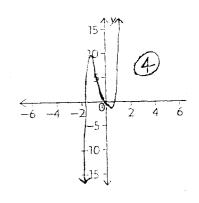
Number of Zeros Graph

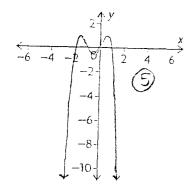
(b)
$$f(x) = 2x^5 + 7x^4 - 3x^3 + 18x^2 + 5$$

(c)
$$f(x) = -x^4 - 2x^3 + x^2 + 2x$$


(d)
$$f(x) = x^3 - 2x$$


(e)
$$f(x) = -2x^3 + 4x^2 - 3x - 1$$


(f)
$$f(x) = x^4 + 2x^3 - 3x - 1$$


(g)
$$f(x) = 5x^5 + 5x^4 - 2x^3 + 4x^2 - 3x$$

