Average Rate of Change

We will be using distance (m) vs time (s) graphs for the following examples:

Example #1

Example #2

(a) Determine the constant rate of change for the interval $0 \le t \le 5$

 $R^{o.C.} = \lfloor n \rfloor$

(b) Determine the constant rate of change for the interval $5 \le t \le 10$

$$p.o.c = 2m/s$$

(c) Determine the constant rate of change for the interval $10 \le t \le 15$

$$R^{or} = -0.5m/s$$

(d) Determine the constant rate of change for the interval $15 \le t \le 20$

$$f^{0.c.} = -0.5 m/s$$

(e) What is the average rate of change for this graph?

$$Average = \frac{1+2+(-0.5)+(-0.5)}{4}$$

$$= 0.5 m/(5.$$

$$= 0.5 m/(5.$$

$$= \frac{10}{20} m/(5.)$$

$$= 0.5 m/(5.)$$

$$= \frac{10}{20} m/(5.)$$

$$= 0.5 m/(5.)$$

)

(a) What is the average rate of change for this graph?

(b) Determine the average rate of change for the interval $0 \le t \le 5$

(c) Determine the average rate of change for the interval $5 \le t \le 10$