We will be using distance (m) vs time (s) graphs for the following examples:
Example \#1

(a) Determine the constant rate of change for the interval $0 \leq t \leq 5$

$$
\begin{aligned}
& \begin{aligned}
\text { rule of } & =\text { slope of line } \\
& =\frac{\text { rise }}{\text { in }}
\end{aligned} \\
& \begin{aligned}
& \text { ass }=\frac{\text { rise }}{r v n} \\
&=\frac{\Delta d}{\Delta t} S=2 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \begin{aligned}
\text { ratgane }^{d} & =\frac{10-0}{5-0} \\
& =\frac{10}{5} \\
& =2 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

(b) Determine the constant rate of change for the interval $5 \leq t \leq 10$

$$
\begin{aligned}
& \text { rate of }=\frac{30-10}{10-5} \\
&=\frac{20}{5} \\
&=4 \mathrm{~m} / \mathrm{s} \\
& \text { cage rate of change for this graph? }
\end{aligned}
$$

(c) What is the average rate of change for this graph?

$$
\begin{aligned}
\begin{array}{l}
\text { Aubogt } \\
\text { foforg }
\end{array} & =\frac{2 \times 4}{2} \\
& =3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example \#2

(a) Determine the constant rate of change for the interval $0 \leq t \leq 5$

$$
R O^{C \cdot}=\operatorname{lm} / 5
$$

(b) Determine the constant rate of change for the interval $5 \leq t \leq 10$

$$
f^{\circ \cdot c}=2 \mathrm{~m} / \mathrm{s}
$$

(c) Determine the constant rate of change for the interval $10 \leq t \leq 15$

$$
\mathrm{h}^{0 \mathrm{ol}}=-0.5 \mathrm{~m} / \mathrm{s}
$$

(d) Determine the constant rate of change for the interval $15 \leq t \leq 20$

$$
f^{0 . c}=-0.5 \mathrm{~m} / \mathrm{s}
$$

(e) What is the average rate of change for this graph?

(a) What is the average rate of change for this graph?

$$
\begin{aligned}
A_{0} & =\frac{15.0}{10.0} \\
& =\frac{15}{10} \\
& =1.5 m 15
\end{aligned}
$$

(b) Determine the average rate of change for the interval $0 \leq t \leq 5$
(c) Determine the average rate of change for the interval $5 \leq t \leq 10$

