Dividing Polynomials: Long Division

Example 1

Divide $2x^{\scriptscriptstyle 2} + 5x {-}8 \ \text{by} \ x{+}3$.

A restriction must be placed on x in order to avoid division by 0. Here $x{\ne}{-3}$.

The process required to carry out the division of a polynomial by another polynomial is similar to the procedure used for numerical long division.

*** Recall the process of numerical long division and review the terminology by dividing $1724\;$ by $13\;$. Show Work:

Conclusion: 1724 = 132 x 13 + 8

Dividend = Divisor × Quotient + Remainder

Back to Example 1:

Divide $2x^{\scriptscriptstyle 2}$ +5x-8 $\,$ by x+3 $\,$.

Solution

To begin, set up the division question and ensure the terms of the dividend and divisor are in descending order of degree.

In Conclusion: P(x) = d(x) q(x) + r(x) [Dividend = Divisor × Quotient + Remainder]

OR , in our example: $2x^2 + 5x - 8 = (x+3)(2x-1) - 5$

Example 2

Determine the quotient and remainder for $(4x^3 - 11x - 9) \div (2x - 3)$, $x \neq 3/2$

Solution

Notice the dividend has no x^2 term. When terms are missing in the dividend or divisor, placeholders are used to keep the terms properly aligned.

$$2x-3$$
 $4x^3 + 0x^2 - 11x - 9$
 \uparrow
placeholder

Example 3

Determine $3x^{\scriptscriptstyle 4} + \! 12x^{\scriptscriptstyle 2} - \! 2x^{\scriptscriptstyle 3} - \! 5 \div x^{\scriptscriptstyle 2} - \! 1$, $x \neq \pm 1$.

Solution

When setting up the division, ensure the terms of the dividend and divisor are in descending order, and use placeholders for missing terms.