Dividing Polynomials: Long Division

Example 1

Divide $2 \mathrm{x}^{2}+5 \mathrm{x}-8$ by $\mathrm{x}+3$.
A restriction must be placed on x in order to avoid division by 0 . Here $x \neq-3$.
The process required to carry out the division of a polynomial by another polynomial is similar to the procedure used for numerical long division.
*** Recall the process of numerical long division and review the terminology by dividing 1724 by 13 . Show Work:

Conclusion: $1724=132 \times 13+8$
Dividend $=$ Divisor \times Quotient + Remainder

Back to Example 1:

Divide $2 x^{2}+5 x-8$ by $x+3$.

Solution

To begin, set up the division question and ensure the terms of the dividend and divisor are in descending order of degree.

In Conclusion:
$\mathrm{P}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$ [Dividend $=$ Divisor \times Quotient + Remainder]
OR , in our example:
$2 \mathrm{x}^{2}+5 \mathrm{x}-8=(\mathrm{x}+3)(2 \mathrm{x}-1)-5$

Example 2

Determine the quotient and remainder for $\left(4 x^{3}-11 x-9\right) \div(2 x-3), \quad x \neq 3 / 2$

Solution

Notice the dividend has no x^{2} term. When terms are missing in the dividend or divisor, placeholders are used to keep the terms properly aligned.

Example 3

Determine $3 x^{4}+12 x^{2}-2 x^{3}-5 \div x^{2}-1, x \neq \pm 1$.

Solution

When setting up the division, ensure the terms of the dividend and divisor are in descending order, and use placeholders for missing terms.

