How Fast on Average?

1. An automobile enters a road and travels the following distances in metres during the next 6 seconds, where *s* represents distance in metres and *t* time in seconds.

1	0	1	2	3	4	5	6
S	0	1	3	6	10	15	21

- a) Sketch a smooth graph of *s* as a function of *t* for $0 \le t \le 6$ on the graph grid provided.
- b) Determine the average rate of change of distance with respect to time for the interval: $t \in [3,6]$.

c) On the graph, draw a straight line joining the points representing the start and end of the time interval in part a). How is the quantity calculated in part a) related to the line drawn?

				· · · · ·	· · · ·			
1								
		_	+		·	+		ļ
ļ			+		4	+	<u> </u>	
1	1		1	1		1	1	ļ
1				1			1	1
L	-					+		1
1	1	1			1		1	1
	_	_		1				
								L
	1	1	1	Í		1	1	(T
	-	1	1			1		
			1					
		1	-					
			1					
								_
				1	1	L	L	
						1		
							_	
	1	1	1					
		1			1			
	1	1						
				1				
	1			1				
			İ.					1
)							
						-		
	1	1		1				
	1	1	ţ	f 1			ļ	
		1						
		1			1		ł	1
		i						
		·				[1
	r							
							1	1
							1	
611		the		h of	61			

Note: In general, for a function f(x),

- (1) A line passing through two points, (a, f(a)) and (b, f(b)) on the graph of f(x) is called a **secant**.
- (2) The _____ of the secant determines the ______ of the

function over the interval [a,b]. The units used will be

- d) On the curve, draw the secant from t = 0 to t = 3. Use the secant drawn to determine the average rate of change over the interval $t \in [0,3]$.
- e) Based on the above example, describe the following methods that can be used to determine the average rate of change for a function f(x), over the interval[a,b].
 (i) algebraic
 (ii) graphical
- f) If the points in part a) satisfy an equation of the form $s = pt^2 + qt$, determine pand q. Use this equation to determine the average rate of change for $t \in [15,20]$. What assumption is being made here?