The Exponential Function

1. Graph each of the following using a table of values.

b) $y=\left(\frac{1}{2}\right)^{x}$

What do you notice about the finite differences? \qquad
Both of these equations are of the form $y=b^{x}$ and pass through the point \qquad
If the $b>1$, the curve will \qquad If $0<b<1$ the curve will \qquad
Curves of growth increase \qquad at first and then more \qquad later on.

Curves of decay decrease \qquad at first and then more \qquad later on.

Domain \qquad Range \qquad
Both graphs get very close to the x -axis but never cross it.
The x -axis is called the \qquad It's equation is \qquad
2. Graph each of the following using a table of values.
a) $y=4(2)^{x}$

b) $y=3\left(\frac{1}{2}\right)^{x}-5$

For the exponential function $y=a b^{x}+c$ what is the
vertical slide? \qquad vertical stretch? \qquad
equation of the asymptote? \qquad
y-intercept? \qquad

Describe the end behaviour for the 2 graphs above:
a) As $x \rightarrow \infty, y \rightarrow$ \qquad (As x gets infinitely bigger, what does the y-value do?)
As $x \rightarrow-\infty, y \rightarrow$ \qquad (As x gets infinitely smaller, what does the y-value do?)
b) As $x \rightarrow \infty, y \rightarrow$ \qquad
As $x \rightarrow-\infty, y \rightarrow$ \qquad
3. Graph each of the following using your knowledge of the y-intercept and the asymptote.
$\begin{array}{ll}\text { a) } y=4(3)^{x}-6 & \text { b) } y=2\left(\frac{1}{2}\right)^{x}+1\end{array}$

4. Describe $y=\frac{2}{3}(6)^{x}+12$ as a transformation of $y=6^{n}$.

Write the first in terms of the second using function notation. Let the first equation be $f(x)$ and the second equation be $h(x)$.

Homework:

1. Graph each of the following functions.
a) $y=3^{x}$
b) $y=4\left(\frac{1}{2}\right)^{x}$

c) $y=3(2)^{x}-8$

d) $y=2\left(\frac{1}{2}\right)^{x}-4$

2. Determine whether each of the following relations are linear, quadratic, exponential, or neither.

x	y
0	81
1	27
2	9
3	3
4	1
5	$1 / 3$

x	y
0	1
2	8
4	15
6	22
8	29
10	36

x	y
0	1
1	18
2	37
3	58
4	81
5	106

3. Describe the second equation as a transformation of the first. Write the first in terms of the second using function notation. Let the first equation be $f(x)$ and the second equation be $h(x)$.
a) $y=8^{x}, y=\frac{1}{2}(8)^{x-2}$
b) $y=\left(\frac{1}{4}\right)^{x}, y=9\left(\frac{1}{4}\right)^{-x}-5$
