The Exponential Function

1. Graph each of the following using a table of values. a) $y = 2^{x}$ b) $y = (\frac{1}{2})^x$ xy $x \mid y$ +++++++++++What do you notice about the finite differences? Both of these equations are of the form $y = b^x$ and pass through the point If the b > 1, the curve will _____ If 0 < b < 1 the curve will _____ Curves of growth increase _______ at first and then more _______ later on. Curves of decay decrease _______ at first and then more _______ later on. Domain Range Both graphs get very close to the x-axis but never cross it. The x-axis is called the ______ It's equation is ______ 2. Graph each of the following using a table of values. a) $y = 4(2)^{x}$ b) $y = 3(\frac{1}{2})^x - 5$ x y Х y ┟┊┟┨┇┊╗╻╋┥┨╞╎╒┥ For the exponential function $y = ab^{x} + c$ what is the vertical slide? ______ equation of the asymptote? vertical stretch? _____ y-intercept? Describe the end behaviour for the 2 graphs above: a) As $x \to \infty$, $y \to$ (As x gets infinitely bigger, what does the y-value do?) As $x \to -\infty$, $y \to -\infty$ (As x gets infinitely smaller, what does the y-value do?) b) As $x \to \infty, y \to$ _____

As $x \to -\infty$, $y \to$ _____

X	у	x	У		X
0	81	0	1		0
1	27	2	8		1
2	9	4	15		2
3	3	6	22		3
4	1	8	29		4
5	1/3	10	36	1	5

3. Describe the second equation as a transformation of the first. Write the first in terms of the second using function notation. Let the first equation be f(x) and the second equation be h(x).

a) $y = 8^x$, $y = \frac{1}{2}(8)^{x-2}$ b) $y = (\frac{1}{4})^x$, $y = 9(\frac{1}{4})^{-x} - 5$