Write the exponential functions in the form $y = a(b)^x + q$.

Example 1:

Determine the equation of the exponential function with a common ratio of 3, a y-intercept of 5 and a horizontal asymptote y = -2.

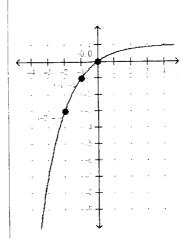
Solution:

$$y = a(b)^x + q$$

$$b = 3 \text{ and } q = -2$$

$$y = a(3)^{3} - 2$$

$$5 = a(3)^0 - 2$$


$$7 = a(1)$$

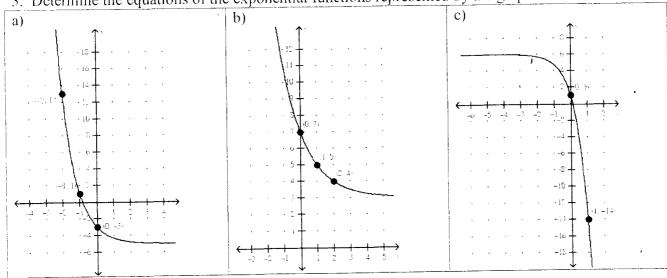
$$\therefore a = 7$$

 $y = 7(3)^{4} - 2$ is the equation of the exponential function.

Example 2:

Use the graph to determine the equation of the exponential function.

$$y = a(b)^{\lambda} + q$$
$$q = 1$$


Determine common ratio of 1st differences. Sub in a point to get a.

The equation is $y = -\left(\frac{1}{2}\right)^x + 1$.

Exercise:

- 1. Determine the equation of the exponential function with a common ratio of 2, a horizontal asymptote y = 4 and passing through the point (2, 10).
- 2. Determine the equation of the exponential function with a common ratio of 3, a horizontal asymptote y = -4 and a y-intercept of -6.

3. Determine the equations of the exponential functions represented by the graphs below:

Answers:

1.
$$y = 1.5(2)^{x} + 4$$
 or $y = 3(2)^{x-3} + 4$ 2. $y = -2(3)^{x} - 4$ 3. a) $y = 2\left(\frac{1}{3}\right)^{x} - 5$ b) $y = 4\left(\frac{1}{2}\right)^{x} + 3$ c) $y = -5(4)^{x} + 6$