Application \#1
Two triangles have the same base length, represented by $x$. The height of one triangle is $x+1$. The height of the other triangle is $x+3$. Write and simplify an expression that represents the total area of the two triangles.

$$
\begin{aligned}
& \text { Areal }=\frac{\text { bxh }}{2} \quad \quad \quad \text { Area } 2 \\
&==\frac{(x)(x+1)}{2}=\frac{b x h}{2} \\
& \begin{aligned}
& \text { Total } \\
& \text { Area }=\frac{x(x+1)}{2}+\frac{(x)(x+3)}{2} \\
&=\frac{x^{2}+x+x^{2}+3 x}{2} \\
&=\frac{2 x^{2}+4 x}{2} \\
&=\frac{2 x(x+2)}{2} \\
&=x(x+2)
\end{aligned}
\end{aligned}
$$

Application \#2
Rectangle $\mathbf{A}$ and Rectangle $\mathbf{B}$ each have a length of $2 x+1$. Rectangle $\mathbf{A}$ has an area of $6 x^{2}+5 x+1$ and Rectangle $\mathbf{B}$ has an area of $4 x^{2}-4 x-3$. Find an expression that represents the ratio of width $\mathbf{A}$ to width $\mathbf{B}$.
Rect $A$

$$
\begin{aligned}
\text { Area } & =6 x^{2}+5 x+1 \\
& =(3 x+1)(2 x+1) \\
\therefore \text { width } & =3 x+1
\end{aligned}
$$

Rect B

$$
\begin{aligned}
\text { Area } & =4 x^{2}-4 x-3 \\
& =(2 x-3)(2 x-1)
\end{aligned}
$$

$$
\therefore \text { width }=2 x-3
$$

$$
\frac{\text { Area } A}{\text { Area } B}=\frac{3 x+1}{2 x-3}
$$

A rectangle is 6 times as long as it is wide. Determine the ratio of its area to its perimeter, in simplest form, if its width if represented by $w+3$.


$$
\begin{aligned}
& \text { with }=w+3 \\
& \text { length }=6 w+18 \\
& \begin{aligned}
\text { Area } & =(6 w+18)(w+3) \\
& =6(w+3)(w+3)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Perimeter }=14 w+42 \\
&=14(w+3) \\
& \begin{aligned}
\text { Area } & =\frac{6(w+3)(w+3)}{14(w+3)} \\
& =\frac{3(w+3)}{7}
\end{aligned}
\end{aligned}
$$

