

- a) $y^{10}(y^4)^{-3}$ c) $\frac{(n^{-4})^3}{(n^{-3})^{-4}}$ e) $\frac{(x^{-1})^4 x}{x^{-3}}$
- **b**) $(x^{-3})^{-3}(x^{-1})^5$ **d**) $\frac{w^4(w^{-3})}{(w^{-2})^{-1}}$ **f**) $\frac{(b^{-7})^2}{b(b^{-5})b^9}$

3. Consider the expression
$$\frac{x^7(y^2)^3}{x^5y^4}$$
.

- Substitute x = -2 and y = 3 into the expression, and evaluate it.
- Simplify the expression. Then substitute the values for x and y to evaluate it.
- Which method seems more efficient?

PRACTISING

4. Simplify. Express answers with positive exponents.

a)
$$(pq^2)^{-1}(p^3q^3)$$
 c) $\frac{(ab)^{-2}}{b^5}$ e) $\frac{(w^2x)^2}{(x^{-1})^2w^3}$

- b) $\left(\frac{x^3}{y}\right)^{-2}$ d) $\frac{m^2n^2}{(m^3n^{-2})^2}$ f) $\left(\frac{(ab)^{-1}}{a^2b^{-3}}\right)^{-2}$
- 5. Simplify. Express answers with positive exponents.

a)
$$(3xy^4)^2(2x^2y)^3$$
 c) $\frac{(10x)^{-1}y^3}{15x^3y^{-3}}$ e) $\frac{p^{-5}(r^3)^2}{(p^2r)^2(p^{-1})^2}$

c)
$$\frac{(10x)^{-1}y^3}{15x^3y^{-3}}$$

e)
$$\frac{p^{-5}(r^3)^2}{(p^2r)^2(p^{-1})^2}$$

b)
$$\frac{(2a^3)^2}{4ab^2}$$

d)
$$\frac{(3m^4n^2)^2}{12m^{-2}n^6}$$

b)
$$\frac{(2a^3)^2}{4ab^2}$$
 d) $\frac{(3m^4n^2)^2}{12m^{-2}n^6}$ **f**) $\left(\frac{(x^3y)^{-1}(x^4y^3)}{(x^2y^{-3})^{-2}}\right)^{-1}$

6. Simplify. Express answers with positive exponents.

a)
$$(x^4)^{\frac{1}{2}}(x^6)^{-\frac{1}{3}}$$

c)
$$\frac{\sqrt{25m^{-12}}}{\sqrt{26-10}}$$

c)
$$\frac{\sqrt[4]{25m^{-12}}}{\sqrt{36m^{10}}}$$
 e) $\left(\frac{(32x^5)^{-2}}{(x^{-1})^{10}}\right)^{0.2}$

$$\mathbf{b}) \quad \frac{9(c^8)^{0.5}}{(16c^{12})^{0.25}}$$

b)
$$\frac{9(c^8)^{0.5}}{(16c^{12.})^{0.25}}$$
 d) $\sqrt[3]{\frac{(10x^3)^2}{(10x^6)^{-1}}}$ **f**) $\sqrt[40]{1024x^{20}}$

$$\frac{\sqrt[4]{1024x^{20}}}{\sqrt[9]{512x^{27}}}$$

- 7. Evaluate each expression. Express answers in rational form with positive exponents.
 - a) $(16x^6y^4)^{\frac{1}{2}}$ for x = 2, y = 1.

b)
$$\frac{(9p^{-2})^{\frac{1}{2}}}{6p^2}$$
 for $p = 3$

c)
$$\frac{(81x^4y^6)^{\frac{1}{2}}}{8(x^9y^3)^{\frac{1}{3}}}$$
 for $x = 10, y = 5$

d)
$$\left(\frac{(25a^4)^{-1}}{(7a^{-2}b)^2}\right)^{\frac{1}{2}}$$
 for $a = 11, b = 10$

- 8. Evaluate. Express answers in rational form with positive exponents.
 - a) $(\sqrt{10000x})^{\frac{3}{2}}$ for x = 16
 - **b**) $\left(\frac{(4x^3)^4}{(x^3)^6}\right)^{-0.5}$ for x = 5
 - c) $(-2a^2b)^{-3}\sqrt{25a^4b^6}$ for a = 1, b = 2
 - d) $\sqrt{\frac{(18m^{-5}n^2)(32m^2n)}{4mn^{-3}}}$ for m = 10, n = 1
- 9. Simplify. Express answers in rational form with positive exponents.
 - a) $(36m^4n^6)^{0.5}(81m^{12}n^8)^{0.25}$
- c) $\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^3$
- **b**) $\left(\frac{(6x^3)^2(6y^3)}{(9xy)^6}\right)^{-\frac{1}{3}}$
- d) $\left(\frac{\left(x^{18}\right)^{\frac{-1}{6}}}{\sqrt[5]{242} \cdot 10}\right)^{0.5}$
- 10. If $M = \frac{(16x^8y^{-4})^{\frac{1}{4}}}{32x^{-2}y^8}$, determine values for x and y so that

 a) M = 1 b) M > 1 c) 0 < M < 1 d) M < 0

- 11. The volume and surface area of a cylinder are given, respectively, by the formulas

$$V = \pi r^2 h$$
 and $SA = 2\pi r h + 2\pi r^2$.

- Determine an expression, in simplified form, that represents the surface area-to-volume ratio for a cylinder.
- Calculate the ratio for a radius of 0.8 cm and a height of 12 cm.
- 12. If x = -2 and y = 3, write the three expressions in order from least to greatest.

$$\frac{y^{-4}(x^2)^{-3}y^{-3}}{x^{-5}(y^{-4})^2}, \frac{x^{-3}(y^{-1})^{-2}}{(x^{-5})(y^4)}, (y^{-5})(x^5)^{-2}(y^2)(x^{-3})^{-4}$$

- 13. How is simplifying algebraic expressions like simplifying numerical ones?
- How is it different?

Extending

- The formula for the volume of a sphere of radius r is $V(r) = \frac{4}{3}\pi r^3$. Solve this equation for r. Write two versions, one in radical form and one in exponential form.
 - b) Determine the radius of a sphere with a volume of $\frac{256\pi}{3}$ m³.
- **15.** Simplify $\frac{\sqrt{x(x^{2n+1})}}{\sqrt[3]{x^{3n}}}$, x > 0