Trig Applications Review

#1 The rodent population varies with the number of predators that inhabit the region. At any time you can predict the rodent population (r) using the function $r = 2500 + 1500 \sin\left(\frac{\pi}{4}t\right)$ where t is the number of years that have passed since 1976.

- (a) Graph the function for 3 cycles.
- (b) What is the period of the function?
- (c) In the first cycle of the function, what was the maximum number of rodents and in which year did it occur?
- (d) What was the minimum number of rodents and in which year did it occur?
- (e) How many rodents would you predict for the year 2014?
- (f) Determine the average rate of change of the rodent population from the year 2000 to 2007.
- (g) Determine the instantaneous rate of change of the rodent population in the year 2008.

#2 A group of students is tracking a friend, John, who is riding a Ferris Wheel. They start tracking his height and see that John reaches the maximum height of 40 m after 3 sec and reaches a minimum height of 5 m after 25 seconds.

- (a) Graph the function for 3 cycles.
- (b) Determine a sinusoidal function that models John's height with respect to time. Use two different equations, one using sine and another using cosine.
- (c) Determine John's height 3 minutes after the students start tracking his height.
- (d) Determine John's initial height at the time when the friends start tracking.

#3 A group of students is tracking a friend, John, who is riding a Ferris Wheel. John gets on at the bottom, which is 4 m off the ground, and they watch John reach a maximum height of 36 m after 12 seconds. John continues to enjoy the ride, and after 5 times around, he gets off at the bottom.

- (a) Graph the function for 3 cycles.
- (b) Determine a sinusoidal function that models John's height with respect to time. Use two different equations, one using sine and another using cosine.
- (c) Determine John's height after 1 minute and 10 seconds.
- (d) John is able to see the falls when he is above 32 m. For each cycle, how long is the falls visible to John?

EXAMPLE 2

A group of students is tracking a friend, John, who is riding a Ferris wheel. They know that

John reaches a maximum height of 40 m after 3 seconds and then reaches the minimum height

of 5 m after 25 seconds. [TIPS/9]

A) Determine a sinusoidal function that models John's height with respect to time.

$$y = -17.5\cos\left(\frac{17}{22}(x-25)\right) + 22.5$$

B) Determine John's height 3 minutes into the ride? Is he rising or falling?

$$\begin{array}{l} x = 180 \\ y = -17.5 \cos\left(\frac{T}{2z}(180 - 25)\right) + 22.5 \\ = -17.5 \left(-0.98982\right) + 22.5 \\ = 17.32 + 22.5 \\ = 39.82 \end{array}$$

$$\begin{array}{l} \text{Height is} \\ 39.82 \text{ Falling} \end{array}$$

C) Determine John's initial height?

$$7=0$$
 $y=-17.5\cos\left(\frac{17}{22}(0-25)\right)+22.5$
 $=-17.5(-0.90963)+22.5$
 $=15.92+22.5$
 $=38.42$
is 38.42 is 38.42 n.

X.

A group of students is tracking a friend, John, who is riding a Ferris wheel. John gets on at the bottom, which is 4 m off the ground, and they watch John reach a maximum height of 36 m after 12 seconds. John continues to enjoy the ride, and after 5 times around, he gets off at the

A) Determine the equation of two sinusoidal functions (a sine and a cosine function) that model John's height with respect to time.

h respect to time.

$$y = -16 \cos\left(\frac{\pi}{12}(x)\right) + 20$$

$$y = 16 \sin\left(\frac{\pi}{12}(x-6)\right) + 20$$

 $PL = \frac{2\pi}{E}$ $K = \frac{2\pi}{2}$ $K = \frac{7\pi}{2}$

B) How high is John after 1 min and 10 seconds?

$$y = -16 \cos \left(\frac{17}{72}(70)\right) + 20$$

 $= -16 \left(0.866025\right) + 20$ -- John is
 $= 6.14 \text{ m}$

C) John is able to see the Falls when he is above 32 m. For each revolution, how long is the Falls visible?

$$R = 32.$$

$$32 = -16 \cos(\frac{\pi}{12}(x)) + 20 (32m)$$

$$12 = -16 \cos(\frac{\pi}{12}(x))$$

$$-0.75 = \cos(\frac{\pi}{12}(x))$$

$$138.59 = \frac{\pi}{12}(x)$$

$$9.24 = x$$

N he reaches a height of 32 m after 9.24 seconds.